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Abstract

Least-squares Petrov–Galerkin (LSPG) model-reduction techniques such as the Gauss–Newton with Ap-
proximated Tensors (GNAT) method have shown promise, as they have generated stable, accurate solutions
for large-scale turbulent, compressible flow problems where standard Galerkin techniques have failed. How-
ever, there has been limited comparative analysis of the two approaches. This is due in part to difficulties
arising from the fact that Galerkin techniques perform optimal projection at the time-continuous level, while
LSPG techniques do so at the time-discrete level.

This work provides a detailed theoretical and computational comparison of the two techniques for two
common classes of time integrators: linear multistep schemes and Runge–Kutta schemes. We present a
number of new findings, including conditions under which the LSPG ROM has a time-continuous represen-
tation, conditions under which the two techniques are equivalent, and time-discrete error bounds for the
two approaches. Perhaps most surprisingly, we demonstrate both theoretically and computationally that
decreasing the time step does not necessarily decrease the error for the LSPG ROM; instead, the time step
should be ‘matched’ to the spectral content of the reduced basis. In numerical experiments carried out on a
turbulent compressible-flow problem with over one million unknowns, we show that increasing the time step
to an intermediate value decreases both the error and the simulation time of the LSPG reduced-order model
by an order of magnitude.
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1. Introduction

While modeling and simulation of parameterized systems has become an essential tool in many indus-
tries, the computational cost of executing high-fidelity simulations is infeasibly high for many time-critical
applications. For example, real-time scenarios (e.g., model predictive control) require simulations to execute
in seconds or minutes, while many-query scenarios (e.g., sampling statistical inversion) can require thousands
of simulations corresponding to different parameter instances of the system.

Reduced-order models (ROMs) have been developed to mitigate this computational bottleneck. First,
they execute an offline stage during which computationally expensive training tasks (e.g., evaluating the
high-fidelity model at several points in the parameter space) compute a representative low-dimensional
‘trial’ basis for the system state. Then, during the inexpensive online stage, these methods quickly compute
approximate solutions for arbitrary points in the parameter space via projection: they compute solutions
in the span of the trial basis while enforcing the high-fidelity-model residual to be orthogonal to a low-
dimensional ‘test’ basis. They also introduce other approximations in the presence of general nonlinearities
or non-affine parameter dependence. See Ref. [13] and references within for a survey of current methods.
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By far the most popular model-reduction technique for nonlinear ordinary differential equations (ODEs)
is Galerkin projection [53], wherein the test basis is set to be equal to the trial basis, which is often computed
via proper orthogonal decomposition (POD) [35]. Galerkin projection can be considered continuous optimal,
as the Galerkin-ROM velocity minimizes the ODE (time-continuous) residual in the `2-norm. In addition,
for specialized dynamical systems (e.g., Lagrangian dynamical systems), performing Galerkin projection is
necessary to preserve problem structure [39, 22, 23]. However, theoretical analyses—in the form of time-
continuous error bounds [45] and stability analysis [31]—as well as numerical experiments have shown that
Galerkin projection can lead to significant problems when applied to general nonlinear ODEs: instability
[46], inaccurate long-time responses [52, 43], and no guarantee of a priori convergence (i.e., adding basis
vectors can degrade the solution) [47, Section 5]. In turbulent fluid flows, some of this poor performance can
be attributed to the trial basis ‘filtering out’ small-scale modes essential for energy dissipation.

To address these shortcomings, alternative projection techniques have been developed, particularly in
fluid dynamics. These include stabilizing inner products [47, 11, 38]; introducing dissipation via closure
models [8, 52, 14, 57, 50] or numerical dissipation [36]; performing nonlinear Galerkin projection based on
approximate inertial manifolds [41, 51, 37]; including a pressure-term representation [43, 33]; modifying
the POD basis by including many modes (such that dissipative modes are captured), changing the norm
[36], enabling adaptivity [14], or including basis functions that resolve a range of scales [9] or respect the
attractor’s power balance [10]; and performing Petrov–Galerkin projection [28].

Alternatively, a promising new model-reduction methodology eschews Galerkin projection in favor of
performing projection at the fully discrete level, i.e., after the ODE has been discretized in time [19]. This
discrete-optimal method—known as least-squares Petrov–Galerkin (LSPG) projection—computes the solu-
tion that minimizes the `2-norm of the (time-discrete) residual arising at each time step; this leads to a
notion of a priori convergence [17, Theorem 2.2], as adding basis vectors guarantees monotonic decrease in
the least-squares objective function. When equipped with gappy POD [27] (a least-squares generalization
of—and precursor to—the discrete empirical interpolation method [24]) to approximate the discrete residual
as a complexity-reduction mechanism, this approach is known as the Gauss–Newton with Approximated
Tensors (GNAT) method [21]. While LSPG projection does not necessarily guarantee a priori accuracy
and stablility for turbulent, compressible flows, it has been computationally demonstrated to significantly
outperform Galerkin projection on such problems [20, 21].

In spite of its promise, theoretical analysis has been limited to developing consistency conditions for
snapshot collection [19, 21] and discrete-time error bounds for simple time integrators [21, 3]. In particular,
major outstanding questions include: (1) What are time-continuous and time-discrete representations of the
Galerkin and LSPG ROMs for broad classes of time integrators? (2) Are there conditions under which the
two techniques are equivalent? (3) What discrete-time error bounds are available for the two techniques
for broad classes time integrators? Related to the third issue is how parameters (e.g., time step or basis
dimension) for the LSPG ROM should be chosen to optimize performance. This work aims to fill this gap
by performing a number of detailed theoretical and computational studies that compare Galerkin and LSPG
ROMs for the two most important classes of time integrators: linear multistep methods and Runge–Kutta
schemes. We summarize the most important theoretical results (which map to the three questions above) as
follows:

Full-order model
ODE

Petrov–Galerkin
projection

Least-squares
Petrov–Galerkin ROM

ODE

time discretization

Galerkin
projection

Galerkin ROM
ODE

time discretizationtime discretization

Full-order model
O∆E

Galerkin
projection

Galerkin ROM
O∆E

Petrov–Galerkin
projection

Least-squares
Petrov–Galerkin ROM

O∆E

Figure 1: Relationship between Galerkin and discrete-optimal ROMs at the time-continuous (ODE) and time-discrete (O∆E)
levels. Bolded outlines imply the ROM associates with a minimum-residual solution at that time-discretization level. Dashed
lines imply the relationships are valid under certain conditions (see Theorems 4.2 and 4.3).
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1. Continuous and discrete representations

• Galerkin projection and time discretization are commutative (Theorem 3.4).

• LSPG ROMs can be derived for Runge–Kutta schemes (Section 4.1).

• The LSPG ROM has a time-continuous (i.e., ODE) representation under certain conditions (Sec-
tion 4.2, Figure 1). This ODE depends on the time step ∆t.

2. Equivalence conditions

• Galerkin and LSPG ROMs are equivalent for explicit time integrators (Corollaries 5.1 and 5.2).

• Galerkin and LSPG ROMs are equivalent in the limit of ∆t → 0 for implicit time integrators
(Theorem 5.3).

• Galerkin ROMs are discrete optimal for symmetric-positive-definite residual Jacobians (Theorems
5.4–5.6).

3. Error analysis

• We provide discrete-time error bounds for both Galerkin and LSPG ROMs for linear multistep
schemes (Section 6.1).

• For the backward Euler time integrator, we show that the LSPG ROM yields a lower global state-
space error bound than the Galerkin ROM because it solves a time-global optimization problem
(over a time window) rather than a time-local optimization problem (Corollary 6.4).

• For the backward Euler time integrator, we show that an intermediate time step should yield the
lowest error bound (Corollary 6.5 and Remark 6.6).

• For the backward Euler time integrator, we show that a larger basis size leads to a smaller optimal
time step for the LSPG ROM (Corollary 6.5).

• We provide discrete-time error bounds for both Galerkin and LSPG ROMs for Runge–Kutta
schemes (Section 6.3).

Figure 1 summarizes time-continuous and time-discrete representations of the two techniques.
In addition to the above theoretical results, we present numerical results for a large-scale compressible

fluid-dynamics problem with turbulence modeling characterized by over one million degrees of freedom.
These results illustrate the practical significance of the above theoretical results. Critically, we show that
employing an intermediate time step for the LSPG ROM can decrease both the error and the simulation time
by an order of magnitude, which is a highly non-intuitive result that is of immense practical significance.

The remainder of the paper is organized as follows. Section 2 formulates the full-order model, including
its representation at the time-continuous and time-discrete levels. Section 3 presents the Galerkin ROM
at the continuous and discrete levels, and Section 4 does so for the LSPG ROM. In particular, we provide
conditions under which the LSPG ROM has a time-continuous representation. Section 5 provides conditions
under which the Galerkin and LSPG ROMs are equivalent; in particular, equivalence holds for explicit
integrators (Section 5.1), in the limit of the time step going to zero for implicit integrators (Section 5.2),
and for symmetric-positive-definite residual Jacobians (Section 5.3). Section 6 provides error analysis for
Galerkin and LSPG ROMs for linear multistep schemes (Section 6.1), Runge–Kutta schemes (Section 6.3),
and a detailed analysis in the case of backward Euler (Section 6.2). Section 7 provides detailed numerical
examples that illustrate the practical importance of the analysis. Finally, Section 8 provides conclusions.

In the remainder of this paper, matrices are denoted by capitalized bold letters, vectors by lowercase
bold letters, scalars by unbolded letters. The columns of a matrix A ∈ Rm×n are denoted by ai ∈ Rm,
i ∈ N(n) with N(a) := {1, . . . , a} such that A := [a1 · · · an]. The scalar-valued matrix elements are denoted

by aij ∈ R such that aj :=
[
a1j · · · amj

]T
, j ∈ N(n). A superscript denotes the value of a variable at that

time instance, e.g., xn is the value of x at time n∆t, where ∆t is the time step.

2. Full-order model

We begin by formulating both the time-continuous (ODE) and time-discrete (O∆E) representations of
the full-order model (FOM).
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2.1. Continuous representation

In this work, we consider the full-order model (FOM) to be an initial value problem characterized by a
system of nonlinear ODEs

dx

dt
= f(x, t), x(0) = x0, (2.1)

where x : [0, T ] → RN denotes the (time-dependent) state, x0 ∈ RN denotes the initial condition, and
f : RN × [0, T ] → RN with (ξ, τ) 7→ f (ξ, τ). This ODE can arise, for example, from applying spatial
discretization (e.g., finite element, finite volume, or finite difference) to a partial differential equation with
time dependence. We note that most model-reduction techniques are applied to parameterized systems
wherein the velocity f is also parameter dependent. However, we limit our presentation to unparameterized
systems for notational simplicity, as we are interested comparing Galerkin and LSPG ROMs for a given
instance of the ODE.

2.2. Discrete representation

A time-discretization method is required to solve Eq. (2.1) numerically. We now characterize the full-
order-model O∆E, which is the time-discrete representation of the model, for two classes of time integrators:
linear multistep schemes and Runge–Kutta schemes.

2.2.1. Linear multistep schemes

A linear k-step method applied to numerically solve Eq. (2.1) can be expressed as

k∑
j=0

αjx
n−j = ∆t

k∑
j=0

βjf
(
xn−j , tn−j

)
, (2.2)

where ∆t is the time step, the coefficients αj and βj define a specific linear multistep scheme, α0 6= 0, and
k∑
j=0

αj = 0 is necessary for consistency. In this case, the O∆E is characterized by the following system of

algebraic equations to be solved at each time instance n ∈ N(T/∆t):

rn (wn) = 0, (2.3)

where wn ∈ RN is the unknown variable and rn : RN → RN denotes the linear multistep residual defined as

rn (w) := α0w −∆tβ0f(w, tn) +

k∑
j=1

αjx
n−j −∆t

k∑
j=1

βjf
(
xn−j , tn−j

)
. (2.4)

Then, the state can be updated explicitly as

xn = wn.

Hence, the unknown is equal to the state. These methods are implicit if β0 6= 0.

2.2.2. Runge–Kutta schemes

For an s-stage Runge–Kutta scheme, the O∆E is characterized by the following system of algebraic
equations to be solved at each time step:

rni (wn
1 , . . . ,w

n
s ) = 0, i ∈ N(s). (2.5)

Here, the Runge–Kutta residual is defined as

rni (w1, . . . ,ws) := wi − f(xn−1 + ∆t

s∑
j=1

aijwj , t
n−1 + ci∆t), i ∈ N(s) (2.6)
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and the state is explicitly updated as

xn = xn−1 + ∆t

s∑
i=1

biw
n
i . (2.7)

Here, the unknowns wn
i correspond to the velocity dx/dt at times tn−1 + ci∆t, i ∈ N(s), and the coefficients

bi, ci, and aij define a specific Runge–Kutta scheme. These methods are explicit if aij = 0, ∀j ≥ i and are
diagonally implicit if aij = 0, ∀j > i.

3. Galerkin ROM

This section provides the time-continuous and time-discrete representations of the Galerkin ROM, as well
as key results related to optimality and commutativity of projection and time discretization.

3.1. Continuous representation

Galerkin-projection reduced-order models compute an approximate solution x̃ ≈ x with x̃ ∈ RN to
Eq. (2.1) by introducing two approximations. First, they restrict the approximate solution to lie in a low-
dimensional affine trial subspace x0 + range (Φ), where Φ ∈ RN×p with ΦTΦ = I denotes the given reduced
basis (in matrix form) of dimension p � N . This basis can be computed by a variety of techniques, e.g.,
eigenmode analysis, POD [35], or the reduced-basis method [44, 48, 56, 42, 55]. Then, the approximate
solution can be expressed as

x̃(t) = x0 + Φx̂(t), (3.1)

where x̂ : [0, T ] → Rp denotes the (time-dependent) generalized coordinates of the approximate solution.
Second, these methods substitute x ← x̃ into Eq. (2.1) and enforce the ODE residual to be orthogonal to
range (Φ), which results in a low-dimensional system of nonlinear ODEs

dx̂

dt
= ΦTf(x0 + Φx̂, t), x̂(0) = 0. (3.2)

Remark 3.1. In order to obtain computational efficiency, it is necessary to reduce the computational com-
plexity of repeatedly computing matrix–vector products of the form ΦTf . This can be done using a variety
of methods, e.g., collocation [7, 49, 40], gappy POD [27, 16, 7, 19, 21], the discrete empirical interpolation
method (DEIM) [12, 24, 32, 26, 6], reduced-order quadrature [5], finite-element subassembly methods [4, 29],
or reduced-basis-sparsification techniques [23]. However, in this work we limit ourselves to comparatively
analyzing different projection techniques. For this reason, we do not perform additional analysis for such
complexity-reduction mechanisms; this is the subject of follow-on work.

We now restate the well-known result that Galerkin projection leads to a notion of minimum-residual
optimality at the continuous level. This is reflected in the top-right box of Figure 1, where the bolded outline
indicates minimum-residual optimality.

Theorem 3.2 (Galerkin: continuous optimality). If the reduced basis is orthogonal, i.e., ΦTΦ = I,
then the Galerkin ROM (3.1)–(3.2) is continuous optimal in the sense that the approximated velocity mini-
mizes the `2-norm of the FOM ODE residual (2.1) over range (Φ), i.e.,

dx̃

dt
(x0 + Φx̂, t) = arg min

v∈range(Φ)
‖v − f(x0 + Φx̂, t)‖22. (3.3)
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Proof. Because dx̃
dt = Φdx̂

dt , problem (3.3) can be written as

dx̂

dt
(x0 + Φx̂, t) = arg min

v̂∈Rp
g (v̂) , (3.4)

where g (v̂) := ‖Φv̂ − f(x0 + Φx̂, t)‖22. We now assess whether Eq. (3.4) holds, i.e., whether dx̂
dt as defined

by Eq. (3.2) is the minimizer of g.
The function g can be expressed as g (v̂) = v̂TΦTΦv̂−2v̂TΦTf(x0+Φx̂, t)+f(x0+Φx̂, t)Tf(x0+Φx̂, t).

Due to the strict convexity of the function g, the global minimizer v̂? is equal to the stationary point of g,
i.e., v̂? satisfies

0 =
dg

dv̂

(
v̂?
)

= 2ΦTΦv̂? − 2ΦTf(x0 + Φx̂, t) (3.5)

v̂? = ΦTf(x0 + Φx̂, t), (3.6)

where orthogonality of Φ has been used. Comparing Eqs. (3.6) and (3.2) shows dx̂
dt (x0 + Φx̂, t) = v̂?, which

is the desired result. �

Remark 3.3 (Continuous a priori convergence of the Galerkin ROM). Due to optimality property
(3.3), the Galerkin ROM can be considered a priori convergent (in the sense introduced in Ref. [17, Theo-
rem 2.2]) at the continuous level. In particular, adding vectors to the trial basis—which expands the trial
subspace range (Φ)—results in a monotonic decrease in the minimum-residual objective function in problem
(3.3).

Thus, Galerkin ROMs exhibit desirable properties (i.e., minimum-residual optimality and a priori con-
vergence) at the time-continuous level. We now derive a time-discrete representation for the Galerkin ROM,
noting that these properties are lost at the time-discrete level.

3.2. Discrete representation

As before, a time-discretization method is needed to numerically solve Eq. (3.2). We now characterize
the O∆E for the Galerkin ROM.

3.2.1. Linear multistep schemes

A linear k-step method applied to numerically solve Eq. (3.2) can be expressed as

k∑
j=0

αjx̂
n−j = ∆t

k∑
j=0

βjΦ
Tf
(
x0 + Φx̂n−j , tn−j

)
.

Here, the O∆E is characterized by the following system of algebraic equations to be solved at each time step:

r̂n
(
ŵn) = 0. (3.7)

Here, the discrete residual corresponds to

r̂n (ŵ) := α0ŵ −∆tβ0Φ
Tf(x0 + Φŵ, tn) +

k∑
j=1

αjx̂
n−j −∆t

k∑
j=1

βjΦ
Tf
(
x0 + Φx̂n−j , tn−j

)
(3.8)

and the generalized state is explicitly updated as

x̂n = ŵn.
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3.2.2. Runge–Kutta schemes

Applying an s-stage Runge–Kutta method to solve Eq. (3.2) leads to an O∆E characterized by the
following system of algebraic equations to be solved at each time step:

r̂ni
(
ŵn

1 , . . . , ŵ
n
s

)
= 0, i ∈ N(s). (3.9)

Here, discrete the residual is defined as

r̂ni (ŵ1, . . . , ŵs) := ŵi −ΦTf(x0 + Φx̂n−1 + ∆t

s∑
j=1

aijΦŵj , t
n−1 + ci∆t), i ∈ N(s) (3.10)

and the generalized state is computed explicitly as

x̂n = x̂n−1 + ∆t

s∑
i=1

biŵ
n
i . (3.11)

Note that the Galerkin-ROM solution satisfying Eqs. (3.7) or (3.7) does not in general associate with the
solution to an optimization problem; therefore, the optimality property the method exhibits at the continuous
level has been lost at the discrete level. We now show that Galerkin projection and time discretization are
commutative; this implies that Galerkin ROMs can be analyzed, implemented, and interpreted equivalently
at both the time-discrete and time-continuous levels. This corresponds to the rightmost part of Figure 1.

Theorem 3.4 (Galerkin: commutativity of projection and time discretization).
Performing a Galerkin projection on the governing ODE and subsequently applying time discretization yields
the same model as first applying time discretization on the governing ODE and subsequently performing
Galerkin projection.

Proof. Linear multistep schemes. Eq. (3.7) was derived by performing Galerkin projection on the continuous
representation of the FOM and subsequently applying time discretization. If instead we apply Galerkin
projection to the discrete representation of the FOM in Eq. (2.3), set w = x0 + Φŵ and xi = x0 + Φx̂i,

i ∈ N(n), and use
∑k
j=1 αj = 0 and ΦTΦ = I, we obtain the following O∆E to be solved at each time step:

ΦTrn (x0 + Φŵ) = 0. Comparing the definition of the linear multistep residual (2.4) with Eq. (3.8) reveals

r̂n (ŵ) = ΦTrn (x0 + Φŵ) , (3.12)

which shows that the same discrete equations r̂n (ŵ) = 0 are obtained at each time step regardless of the
ordering of time discretization and Galerkin projection.
Runge–Kutta schemes. Eq. (3.9) was derived by performing Galerkin projection on the continuous FOM
representation and then applying time discretization. If instead we apply Galerkin projection to the discrete
FOM representation in Eq. (2.5), set xn−1 = x0 + Φx̂n−1, wi = Φŵi, i ∈ N(s), and use ΦTΦ = I, we
obtain the following O∆E to be solved at each time step: ΦTrni (Φŵ1, . . . ,Φŵs) = 0, i ∈ N(s). Comparing
the definition of the Runge–Kutta residual (2.6) with Eq. (3.10) reveals

r̂ni (ŵ1, . . . , ŵs) = ΦTrni (Φŵ1, . . . ,Φŵs) , i ∈ N(s), (3.13)

which shows that the same discrete equations r̂ni (ŵ1, . . . , ŵs) = 0, i ∈ N(s) are obtained at each time step
regardless of the ordering of time discretization and Galerkin projection. �

4. Least-squares Petrov–Galerkin ROM

Rather than performing minimum-residual optimal projection on the full-order model ODE (i.e., at the
continuous level), this can be executed on the full-order model O∆E (i.e., at the discrete level). Doing so
enables discrete optimality, which contrasts with the continuous optimality exhibited by Galerkin projection.
In particular, we consider optimal projections that minimize the discrete residual(s) (in some weighted `2-
norm) arising at each time instance.

We note that other residual-minimizing approaches have been developed in the case of linear [17] and non-
linear [40] steady-state problems, and space–time solutions [25]. In addition, a recently developed approach
[1] has suggested L1 minimization of the residual arising at each time instance for hyperbolic problems.
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4.1. Discrete representation

We begin by developing the time-discrete representation for the LSPG ROM for both linear multistep
schemes and Runge–Kutta schemes. The latter is a novel contribution, as previous work has derived discrete-
optimal LSPG ROMs only for linear multistep schemes [19, 21]. Optimality of this approach corresponds to
the bolded bottom-left box of Figure 1.

4.1.1. Linear multistep schemes

As before with Galerkin projection, discrete-optimal ROMs compute solutions using two approximations.
First, they restrict the approximate solution to lie in the same low-dimensional affine trial subspace x̃ ∈
x0 + range (Φ) as Galerkin methods; thus, the approximate solution can be written according to Eq. (3.1).
In the case of linear multistep schemes, the unknown at time step n is simply the state, i.e., wn = xn, which
implies that w̃n = x0 + Φŵn. Second, the discrete-optimal ROM substitutes wn ← w̃n into the O∆E (2.3)
and solves a minimization problem to ensure the approximate solution is optimal in a minimum-residual
sense at the discrete level:

w̃n = arg min
z∈x0+range(Φ)

‖A (z) rn (z) ‖22 (4.1)

or equivalently
ŵn = arg min

ẑ∈Rp
‖A (x0 + Φẑ) rn (x0 + Φẑ) ‖22. (4.2)

Here, A ∈ Rz×N with z ≤ N is a weighting matrix that enables the definition of a weighted (semi)norm.
Examples of such reduced-order models include the LSPG method presented in Refs. [19, 21, 40] (A = I),
LSPG with collocation (A = P with P consisting of selected rows of the identity matrix) [40], and the
related GNAT method [19, 21] (A = (PΦr)

+
P with Φr a basis for the residual and the superscript +

denoting the Moore–Penrose pseudoinverse).
Note that the solution to Eq. (4.2) corresponds to a stationary point of the objective function in Eq. (4.2),

i.e., it satisfies
Ψn(ŵn)Trn

(
x0 + Φŵn) = 0, (4.3)

where the entries of Ψn ∈ RN×p are

ψnij(ŵ) =ami(x0 + Φŵ)
∂aml(x0 + Φŵ)

∂wk
φkjr

n
` (x0 + Φŵ)+

ami(x0 + Φŵ)aml(x0 + Φŵ)
∂rn`
∂wk

(x0 + Φŵ)φkj , i ∈ N(N), j ∈ N(p),

(4.4)

where a repeated index implies summation. Because Eq. (4.3) corresponds to a Petrov–Galerkin projection
with trial subspace range (Φ) and test subspace range (Ψ), the discrete-optimal projection can be referred
to as a least-squares Petrov–Galerkin projection [21, 19].

4.1.2. Runge–Kutta schemes

LSPG ROMs for Runge–Kutta schemes also approximate the solution according to Eq. (3.1). However,
because the unknown at time step n and stage i is the velocity at an intermediate time point, i.e., wn

i =
ẋ
(
tn−1 + ci∆t

)
for i ∈ N(s), we have w̃n

i = Φ ˙̂x
(
tn−1 + ci∆t

)
for this case. Then, these techniques substitute

wn ← w̃n into the O∆E (2.5) and solve the following minimum-residual problem:

(w̃n
1 , . . . , w̃

n
s ) = arg min

(z1,...,z1)∈range(Φ)s

s∑
i=1

‖Ai (z1, . . . ,zs) r
n
i (z1, . . . ,zs) ‖22 (4.5)

or equivalently

(
ŵn

1 , . . . , ŵ
n
s

)
= arg min

(ẑ1,...,ẑs)∈Rp×s

s∑
i=1

‖Ai (Φẑ1, . . . ,Φẑs) r
n
i (Φẑ1, . . . ,Φẑs) ‖22. (4.6)
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Here, Ai ∈ Rz×N , i ∈ N(s) with z ≤ N are weighting matrices. As before, the solution to Eq. (4.6)
corresponds to a stationary point of the objective function, i.e., it satisfies

s∑
j=1

Ψn
ij(ŵ

n
1 , . . . , ŵ

n
s )Trnj

(
Φŵn

1 , . . . ,Φŵ
n
s

)
= 0, i = 1, . . . , s, (4.7)

where entries of the test bases Ψn
ij ∈ RN×p, i, j ∈ N(s) are[

Ψn
ij

]
k`

(ŵ1, . . . , ŵs) =[Ai]uk(Φŵ1, . . . ,Φŵs)
∂[Ai]um(Φŵ1, . . . ,Φŵs)

∂[wj ]n
φn`[r

n
i ]m(Φŵ1, . . . ,Φŵs)+

[Ai]uk(Φŵ1, . . . ,Φŵs)[Ai]um(Φŵ1, . . . ,Φŵs)
∂[rni ]m
∂[wj ]n

(Φŵ1, . . . ,Φŵs)φn`,

(4.8)

where [·]ij denotes entry (i, j) of the argument. This again leads to a least-squares Petrov–Galerkin inter-
pretation for the discrete-optimal ROM.

In the explicit or diagonally implicit cases, we can consider an alternative notion of discrete optimality.
Explicit Runge–Kutta schemes are characterized by aij = 0, ∀j ≥ i, while diagonally implicit Runge–Kutta
(DIRK) schemes [2] are characterized by aij = 0, ∀j > i. In these cases, solutions wn

i , i ∈ N(s) can be
computed sequentially, i.e.,

qni (wn
i ) = 0, i = 1, . . . , s

with

qni (w) := w − f(xn−1 + ∆taiiw + ∆t

i−1∑
j=1

aijw
n
j , t

n−1 + ci∆t), i = 1, . . . , s. (4.9)

We can then formulate the following sequence of optimization problems to compute discrete minimum-
residual approximations:

w̃n
i = arg min

z∈range(Φ)
‖Ai(z)qni (z)‖22, i = 1, . . . , s, (4.10)

or equivalently
ŵn
i = arg min

ẑ∈Rp
‖Ai(Φẑ)qni (Φẑ)‖22, i = 1, . . . , s. (4.11)

Here, the associated Petrov–Galerkin projection is

Ψn
i (ŵn

i )Tqni (Φŵn
i ) = 0, i = 1, . . . , s, (4.12)

with test-basis entries of

[Ψn
i ]jk (ŵ) = [Ai]uj(Φŵ)

∂[Ai]u`(Φŵ)

∂wm
φmk[qni ]`(Φŵ) + [Ai]uj(Φŵ)[Ai]um(Φŵ)

∂[qni ]m(Φŵ)

∂w`
φ`k, (4.13)

Note that in the explicit case, the LSPG ROM generally requires solving a system of nonlinear equations
at each Runge–Kutta stage. Because ∂qni /∂w = I, the system of equations is linear if Ai are constant
matrices, and only an explicit solution update is required if Ai = I and ΦTΦ = I.

Remark 4.1 (Discrete a priori convergence of the LSPG ROM). Due to optimality property (4.1),
the LSPG ROM can be considered a priori convergent (in the sense introduced in Ref. [17, Theorem 2.2]) at
the discrete level for linear multistep schemes, as adding vectors to the trial basis—which expands the trial
subspace range (Φ)—results in a monotonic decrease in the minimum-residual objective function in problem
(4.1). This result also holds for LSPG ROMs applied to Runge–Kutta schemes, as the computed solutions
satisfy alternative optimality properties in the implicit (4.5) and explicit (4.10) cases.

We now see the critical tradeoff between the Galerkin and LSPG ROMs: Galerkin ROMs exhibit continu-
ous (minimum-residual) optimality, while LSPG ROMs exhibit discrete optimality. Without further analysis,
it is unclear which of these attributes is preferable. Numerical experiments (Section 7) and supporting error
analysis (Section 6) will highlight the benefits of discrete optimality over continuous optimality in practice.
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4.2. Continuous representation

Because the LSPG ROM introduces approximations at the discrete level, it is unclear whether it can be
interpreted at the continuous level. In fact, it has not previously been shown that a continuous representation
of the LSPG ROM even exists. We now show that an ODE representation of the LSPG ROM does indeed
exist for both linear multistep schemes and Runge–Kutta schemes under certain conditions; however, the
ODE depends on the time step used to define the LSPG ROM. This associates with the top-left section of
the relationship diagram in Figure 1.

Theorem 4.2 (LSPG ROM continuous representation: linear multistep schemes).
The LSPG ROM for linear multistep integrators is equivalent to applying a Petrov–Galerkin projection to
the ODE with test basis (in matrix form)

Ψ(x̂, t) = ATA

(
α0I −∆tβ0

∂f

∂ξ
(x0 + Φx̂, t)

)
Φ (4.14)

and subsequently applying time integration with a linear multistep scheme with time step ∆t if A is a constant
matrix and (at least) one of the following conditions holds:

1. βj = 0, j ≥ 1 (e.g., a single-step method),

2. the velocity f is linear in the state, or

3. β0 = 0 (i.e., explicit schemes).

Proof. Applying Petrov–Galerkin projection to the full-order model ODE (2.1) using a trial subspace x0 +
range (Φ) and test subspace range (Ψ) yields the following ODE

Ψ(x̂, t)TΦ
dx̂

dt
= Ψ(x̂, t)Tf(x0 + Φx̂, t), x̂(0) = 0, (4.15)

which can be written in standard form as

dx̂

dt
=
(
Ψ(x̂, t)TΦ

)−1

Ψ(x̂, t)Tf(x0 + Φx̂, t), x̂(0) = 0. (4.16)

Case 1 Applying a linear multistep time integrator with the stated assumption of βj = 0, j ≥ 1 to numerically
solve Eq. (4.16) results in the following discrete equations to be solved at each time instance:

α0ŷ
n −∆tβ0

(
Ψ(ŷn, tn)TΦ

)−1

Ψ(ŷn, tn)Tf(x0 + Φŷn, tn) +

k∑
j=1

αjx̂
n−j = 0. (4.17)

Pre-multiplying by Ψ(ŷn, tn)TΦ yields discrete equations r̂n
(
ŷn
)

= 0 with residual

r̂n (ŵ) := α0Ψ(ŵ, tn)TΦŵ −∆tβ0Ψ(ŵ, tn)Tf(x0 + Φŵ, tn) +

k∑
j=1

αjΨ(ŵ, tn)TΦx̂n−j . (4.18)

Comparing Eqs. (4.18) and (2.4) reveals r̂n (ŵ) = Ψ(ŵ, tn)Trn (x0 + Φŵ) and so the solution ŷn satisfies

Ψ(ŷn, tn)Trn
(
x0 + Φŷn

)
= 0. (4.19)

Under the stated assumptions, we have ∂rn/∂w(x) = α0I − ∆tβ0
∂f
∂ξ (x, tn) and so the LSPG test

basis Ψn defined in Eq. (4.4) is equal to the test basis in Eq. (4.14) evaluated at time instance n, i.e.,
Ψn(ŵ) = Ψ(ŵ, tn). Therefore, the solution ŵn to the LSPG O∆E (4.3) satisfies

Ψ(ŵn, tn)Trn
(
x0 + Φŵn) = 0. (4.20)

This shows that ŵn = ŷn, i.e., the solutions to the LSPG O∆E and the O∆E obtained after applying
Petrov–Galerkin projection with test basis Ψ(x, t) defined by Eq. (4.14) to the full-order model ODE and
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subsequently applying time integration are equivalent under the stated assumptions, which is the desired
result.
Case 2 In this case, the test basis is independent of the state, i.e.,

Ψ(t) = ATA

(
α0I −∆tβ0

∂f

∂ξ
(·, t)

)
Φ. (4.21)

Applying a linear multistep time integrator to solve Eq. (4.16) and subsequently pre-multiplying by the
constant matrix Ψ(tn)TΦ yields the following discrete equations arising at each time step

r̂n
(
ŷn
)

= 0, (4.22)

where the residual is defined as

r̂n (ŵ) :=α0Ψ(tn)TΦŵ −∆tβ0Ψ(tn)Tf(x0 + Φŵ, tn) +

k∑
j=1

αjΨ(tn)TΦx̂n−j−

∆t

k∑
j=1

βjΨ(tn)Tf
(
x0 + Φx̂n−j , tn−j

)
.

(4.23)

Comparing Eqs. (4.23) and (2.4) reveals r̂n (ŵ) = Ψ(tn)Trn (x0 + Φŵ) and so the solution ŷn satisfies

Ψ(tn)Trn
(
x0 + Φŷn

)
= 0. (4.24)

Under these assumptions, we have ∂rn/∂w = α0I−∆tβ0∂f/∂ξ(·, tn) and so the LSPG test basis Ψn defined
in Eq. (4.4) is equal to the test basis in Eq. (4.21) at time instance n, i.e., Ψn(ŵ) = Ψ(tn). Therefore, the
LSPG O∆E (4.3) can be expressed as

Ψ(tn)Trn
(
x0 + Φŵn) = 0. (4.25)

This shows that ŵn = ŷn, i.e., the solutions to the LSPG O∆E and the O∆E obtained after applying
Petrov–Galerkin projection with test basis Ψ(t) defined by Eq. (4.14) to the full-order model ODE and
subsequently applying time integration are equivalent under the stated assumptions.
Case 3 The assumption β0 = 0 results in a constant test basis

Ψ = α0A
TAΦ. (4.26)

Applying a linear multistep time integrator to solve Eq. (4.16) and subsequently pre-multiplying by the
constant matrix ΨTΦ yields

r̂n
(
ŷn
)

= 0, (4.27)

which is to be solved at each time step with a residual defined as

r̂n (ŵ) := α0Ψ
TΦŵ −∆tβ0Ψ

Tf(x0 + Φŵ, tn) +

k∑
j=1

αjΨ
TΦx̂n−j −∆t

k∑
j=1

βjΨ
Tf
(
x0 + Φx̂n−j , tn−j

)
.

(4.28)
As in Case 2, this leads to r̂n (ŵ) = ΨTrn (x0 + Φŵ). Because ∂rn

∂w (x) = α0I, we also again have Ψn(ŵ) =
Ψ. This leads to the desired result, as the O∆Es for the LSPG ROM and the ROM obtained after applying
Petrov–Galerkin projection with test basis Ψ to the full-order model ODE and subsequently applying time
integration both satisfy ΨTrn(x0 + Φŵn) = 0 under the stated assumptions. �

We now provide conditions under which the LSPG ROM for Runge–Kutta schemes can be expressed as
an ODE.

Theorem 4.3 (LSPG ROM continuous representation: Runge–Kutta schemes). The LSPG ROM
for Runge–Kutta integrators is equivalent to applying a Petrov–Galerkin projection to the ODE with test basis
(in matrix form)

Ψ(x̂, t) = ATA

(
I −∆ta

∂f

∂ξ
(x0 + Φx̂, t)

)
Φ (4.29)
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and subsequently applying time integration if Ai = A, ∀i are constant matrices and the integrator is a singly
diagonally implicit Runge–Kutta (SDIRK) scheme, i.e., aij = 0, ∀j > i and aii = a, ∀i.1

Proof. Applying Petrov–Galerkin projection to Eq. (2.1) using a trial subspace x0 + range (Φ) and test
subspace range (Ψ) yields the following ODE (in standard form)

dx̂

dt
=
(
Ψ(x̂, t)TΦ

)−1

Ψ(x̂, t)Tf(x0 + Φx̂, t), x̂(0) = 0. (4.30)

Applying an SDIRK time integrator to numerically solve Eq. (4.30) results in the following sequence of
discrete equations to be solved at each time step:

ŷni −[(Ψ(x̂n−1 + ∆t

i∑
j=1

aij ŷ
n
j , t

n−1 + ci∆t)
TΦ]−1Ψ(x̂n−1 + ∆t

i∑
j=1

aij ŷ
n
j , t

n−1 + ci∆t)
T

f(x0 + Φx̂n−1 + ∆t

i∑
j=1

aijΦŷ
n
j , t

n−1 + ci∆t) = 0, i = 1, . . . , s.

(4.31)

Pre-multiplying by Ψ(x̂n−1 + ∆t
∑i
j=1 aij ŷj , t

n−1 + ci∆t)
TΦ yields the following discrete equations

q̂ni
(
ŷni
)

= 0, i = 1, . . . , s

with residual

q̂ni (ŵ) :=Ψ(x̂n−1 + ∆taŵ + ∆t

i−1∑
j=1

aij ŷ
n
j , t

n−1 + ci∆t)
T ·Φŵ − f(x0 + Φx̂n−1 + ∆taŵ + ∆t

i−1∑
j=1

aijΦŷ
n
j , t

n−1 + ci∆t)

 . (4.32)

Comparing Eqs. (4.32) and (4.9) reveals

q̂ni (ŵ) = Ψ(x̂n−1 + ∆taŵ + ∆t

i−1∑
j=1

aij ŷ
n
j , t

n−1 + ci∆t)
Tqni (Φŵ) , i = 1, . . . , s

such that the solutions ŷni satisfy

Ψ(x̂n−1 + ∆t

i∑
j=1

aij ŷ
n
j , t

n−1 + ci∆t)
Tqni

(
ŷni
)

= 0, i = 1, . . . , s. (4.33)

Now, under the stated assumptions, we have

∂qni
∂w

(u) = I −∆ta
∂f

∂ξ
(xn−1 + ∆tau+ ∆t

i−1∑
j=1

aijw
n
j , t

n−1 + ci∆t)

such that the LSPG test basis Ψn
i defined in Eq. (4.13) is related to the test basis in Eq. (4.29) as follows:

Ψn
i (ŵ) = Ψ(x̂n−1 + ∆taŵ + ∆t

i−1∑
j=1

aijŵ
n
j , t

n−1 + ci∆t).

1Note that summation on repeated indicies is not implied.
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Therefore, the solutions ŵn
i to the LSPG O∆E (4.12) satisfy

Ψ(x̂n−1 + ∆t

i∑
j=1

aijŵ
n
j , t

n−1 + ci∆t)
Tqni

(
ŵn
i

)
= 0, i = 1, . . . , s. (4.34)

Comparing Eqs. (4.33) and (4.34) shows that the ŵn
i = ŷni , i ∈ N(s), i.e., the solutions to the LSPG

O∆E and the O∆E obtained after applying Petrov–Galerkin projection with test basis Ψ(x, t) defined by
Eq. (4.29) to the full-order model ODE and subsequently applying time integration are equivalent under the
stated assumptions, which is the desired result. �

We now show that the LSPG ROM has a time-continuous representation for all explicit and single-state
Runge–Kutta schemes, which include the widely used forward Euler, backward Euler, and implicit midpoint
schemes.

Corollary 4.4 (LSPG ROM continuous representation: explicit Runge–Kutta). The LSPG ROM
for Runge–Kutta integrators is equivalent to applying a Petrov–Galerkin projection to the ODE with test basis
(in matrix form)

Ψ(x̂, t) = ATAΦ

and subsequently applying time integration if Ai = A, ∀i are constant matrices and an explicit Runge–Kutta
scheme is employed.

Proof. Explicit Runge–Kutta schemes are characterized by aij = 0, j ≥ i and so they satisfy the conditions
Theorem 4.3 with a = 0. �

Corollary 4.5 (LSPG ROM continuous representation: single-stage Runge–Kutta). The LSPG ROM
for Runge–Kutta integrators is equivalent to applying a Petrov–Galerkin projection to the ODE with test basis
(in matrix form)

Ψ(x̂, t) = ATA

(
I −∆ta11

∂f

∂ξ
(x0 + Φx̂, t)

)
Φ

and subsequently applying time integration if Ai = A, ∀i are constant matrices and a single-stage Runge–
Kutta scheme is employed.

Proof. Single-stage Runge–Kutta schemes are characterized by s = 1 and so they satisfy the conditions of
Theorem 4.3 with a = a11. �

5. Equivalence conditions

This section performs theoretical analysis that highlights cases in which Galerkin and LSPG ROMs are
equivalent, in which case the Galerkin ROM exhibits both continuous and discrete optimality. This suggests
that Galerkin projection can be used safely in these scenarios. Section 5.1 shows that equivalence holds for
explicit time integrators, Section 5.2 demonstrates equivalence in the limit of ∆t→ 0, and Section 5.3 shows
equivalence in the case of symmetric-positive-definite residual Jacobians.

5.1. Equivalence for explicit integrators

Corollary 5.1 (Equivalence: explicit linear multistep scheme).
Galerkin projection is equivalent to LSPG projection with A = 1√

α0
I for explicit linear multistep schemes.

Proof. In the case of explicit linear multistep schemes, β0 = 0 and so Galerkin projection corresponds to
Case 3 of Theorem 4.2 with A = 1√

α0
I, as Ψ = Φ in this case. �

Corollary 5.2 (Equivalence: explicit Runge–Kutta scheme). Galerkin projection is equivalent to LSPG
projection with A = I for explicit Runge–Kutta schemes.

Proof. In the case of explicit Runge–Kutta schemes, aij = 0 ∀j ≥ i and so Galerkin projection corresponds
to Theorem 4.3 with A = I and a = 0, as Ψ = Φ in this case. �
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5.2. Equivalence in the limit of ∆t→ 0

Theorem 5.3 (Limiting equivalence).
In the limit of ∆t → 0, Galerkin projection is equivalent to LSPG projection with A = 1√

α0
I for linear

multistep schemes and Ai = I, i ∈ N(s) for Runge–Kutta schemes.

Proof. Linear multistep schemes. Consider solving the LSPG O∆E (4.3) with A = 1√
α0
I. Then, the test

basis defined in Eq. (4.4) is simply

Ψn(ŵ) =
1

α0

∂rn

∂w
(x0 + Φŵ) Φ.

From Eq. (2.4), we can write the residual Jacobian as

∂rn

∂w
(u) = α0I −∆tβ0

∂f

∂ξ
(u, tn).

Therefore, we have

lim
∆t→0

Ψn(ŵ) = lim
∆t→0

1

α0

(
α0I −∆tβ0

∂f

∂ξ
(x0 + Φŵ, tn)

)
Φ = Φ

and so in the limit of ∆t→ 0, the LSPG ROM solution satisfies

lim
∆t→0

Ψn(ŵ)Trn
(
x0 + Φŵn) = ΦTrn

(
x0 + Φŵn) = 0. (5.1)

Because the Galerkin ROM solution also satisfies Eq. (5.1) (see Eq. (3.12) of Theorem 3.4), the two techniques
are equivalent in this limit, which is the desired result.
Runge–Kutta schemes. Consider solving the LSPG O∆E (4.7) with Ai = I, i ∈ N(s). Then, the test basis
defined in Eq. (4.8) is simply

Ψn
ij(ŵ1, . . . , ŵs) =

∂rni
∂wj

(Φŵ1, . . . ,Φŵs)Φ.

Now, from Eq. (2.6) the Jacobian can be expressed as

∂rni
∂wj

(u1, . . . ,us) = Iδij −∆taij
∂f

∂ξ
(xn−1 + ∆t

s∑
j=1

aijuj , t
n−1 + ci∆t).

Therefore, we have

lim
∆t→0

Ψn
ij(ŵ1, . . . , ŵs) = lim

∆t→0

Iδij −∆taij
∂f

∂ξ
(xn−1 + ∆t

s∑
j=1

aijuj , t
n−1 + ci∆t)

Φ = Φδij

and so in the limit of ∆t→ 0, the LSPG ROM solution satisfies

lim
∆t→0

s∑
j=1

Ψn
ij(ŵ1, . . . , ŵs)

Trnj
(
Φŵn

1 , . . . ,Φŵ
n
s

)
= ΦTrni

(
x0 + Φŵn) = 0, i ∈ N(s). (5.2)

Because the Galerkin ROM solution also satisfies Eq. (5.2) (see Eq. (3.13) of Theorem 3.4), the two techniques
are equivalent in this limit, which is the desired result. �
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5.3. Equivalence for symmetric-positive-definite residual Jacobians

Theorem 5.4 (Equivalence: linear multistep schemes). In the case of linear multistep schemes, Galerkin
projection is equivalent to LSPG projection with A (z) = U (z), where U is the Cholesky factor2 of the
residual-Jacobian inverse [

∂rn

∂w

]−1

= UTU , (5.3)

if ∂rn/∂w (wn, tn) = α0I −∆tβ0
∂f
∂ξ (wn, tn) is symmetric positive definite and if

∂ui`
∂wk

φkjr
n
` = 0, ∀i, k. (5.4)

Here, index notation has been used.

Proof. Under the stated assumptions, the LSPG test basis defined in Eq. (4.4) is equal to the trial basis,
i.e., Ψn(ŵn) = Φ. By invoking Eq. (3.12), we can see that the O∆Es for the the LSPG ROM (4.3) and
Galerkin ROM (3.7) both satisfy ΦTrn

(
x0 + Φŵn) = 0, which is the desired result. �

Theorem 5.5 (Equivalence: diagonally implicit Runge–Kutta schemes). In the case of diagonally
implicit Runge–Kutta schemes, Galerkin projection is equivalent to LSPG projection with Ai (z) = U i (z),
where U i is the Cholesky factor of the residual-Jacobian inverse[

∂qni
∂w

]−1

= UT
i U i, (5.5)

if ∂qni /∂w (wn, tn) = I − ∆taii
∂f
∂ξ

(
xn−1 + ∆taiiw

n + ∆t
∑i−1
j=1 aijw

n
j , t

n−1 + ci∆t
)

is symmetric positive

definite and if

∂[U i]j`
∂wm

φmk[qni ]n` = 0, ∀j, k. (5.6)

Here, index notation has been used.

Proof. Under the stated assumptions, the LSPG test basis defined in Eq. (4.13) is equal to the trial basis,
i.e., Ψn

i (ŵn
i ) = Φ, i ∈ N(s). By invoking Eq. (3.13), we can see that the O∆Es for the the LSPG ROM

(4.12) and Galerkin ROM (3.9) both satisfy ΦTqni
(
Φŵn

i

)
= 0, i = 1, . . . , s, which is the desired result. �

Theorem 5.6 (Equivalence: implicit Runge–Kutta schemes). In the case of Runge–Kutta schemes,
Galerkin projection exhibits discrete optimality if ∂r̄n/∂w̄ (w̄n, tn) is symmetric positive definite and if

∂ūi`
∂w̄k

φ̄kj r̄
n
` = 0, ∀i, k. (5.7)

Here, index notation has been used and Ū ∈ RsN×sN is the Cholesky factor of the residual-Jacobian inverse,
i.e., [

∂r̄n

∂w̄

]−1

= Ū
T
Ū . (5.8)

Here,

w̄ :=


w1

...
ws

 ∈ RsN , r̄n : w̄ 7→


rn1 (w1, . . . ,ws)

...
rns (w1, . . . ,ws)

 ∈ RsN , Φ̄ :=


Φ

. . .

Φ

 ∈ RsN×sp.

2 Its derivative can be computed by solving the Lyapunov equation ∂U
∂wk

T
U + U ∂U

∂wk
= −

[
∂rn

∂w

]−1
∂2rn

∂w∂wk

[
∂rn

∂w

]−1
.
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Proof. First, note that solution (ŵn
1 , . . . , ŵ

n
s ) to the Galerkin O∆E (3.13) equivalently satisfies

Φ̄
T
r̄n
(
Φ̄ ˆ̄wn

)
= 0,

where

ˆ̄w :=


ŵ1

...
ŵs

 ∈ Rsp.

We are now precisely in the situation of Theorem 5.4: the Galerkin solution is the solution to the (discrete)
optimization problem

minimize
z∈range(Φ̄)

‖Ū (z) r̄n (z) ‖22 (5.9)

under the assumed conditions. This objective function can be written equivalently as

‖Ū (z) r̄n (z) ‖22 =

s∑
i=1

‖
s∑
j=1

Ū ij (z1, . . . ,zs) r
n
j (z1, . . . ,zs)‖22, (5.10)

where Ū ij ∈ RN×N denotes the (i, j) block of Ū . Therefore, the Galerkin ROM solution satisfies

(ŵn
1 , . . . , ŵ

n
s ) = arg min

(ẑ1,...,ẑs)∈Rp×s

s∑
i=1

‖
s∑
j=1

Aij (Φẑ1, . . . ,Φẑs) r
n
j (Φẑ1, . . . ,Φẑs) ‖22, (5.11)

where Aij = Ū ij . Comparing Eqs. (5.11) and (4.6) reveals that the Galerkin ROM satisfies a slightly more
general notion of discrete optimality than the LSPG schemes considered in this work. �

This analysis demonstrates that Galerkin projection exhibits discrete optimality when the residual Jaco-
bian is symmetric positive definite. This is aligned with recent work that has shown Galerkin projection to
be effective for Lagrangian dynamical systems [39, 22, 23]—which are characterized by symmetric-positive-
definite residual Jacobians—due to the fact that Galerkin projection preserves properties such as symplectic
time evolution and energy conservation. For these reasons, using Galerkin projection is sensible for problems
exhibiting these characteristics.

6. Error analysis

Ultimately, we are interested in assessing the state-space error between the (computed) time-discrete
ROM solution and the (unknown) time-continuous FOM solution. This error comprises two contributions:
the state-space error between (1) the time-continuous FOM and time-discrete FOM solutions (i.e., time-
discretization error), and (2) the time-discrete ROM and time-discrete FOM solutions. This section focuses
on the latter and performs time-discrete state-space error analyses for Galerkin and LSPG ROMs applied to
different time integrators.

Section 6.1 derives error bounds for the Galerkin and LSPG ROMs for linear multistep schemes. Here,
Theorem 6.1 provides a posteriori bounds that depend on the ROM solution, while Theorem 6.2 reports a
priori bounds. Section 6.2 provides a posteriori error bounds for the Backward Euler scheme, as well as
additional analyses that highlight the important role of the time step in the LSPG ROM, which is discussed
in Remark 6.6. Section 6.3 derives ROM error bounds for Runge–Kutta schemes. Here, Theorem 6.7 provides
a posteriori bounds, Corollary 6.8 specializes these results to explicit Runge–Kutta and DIRK schemes, and
Theorem 6.9 and Corollary 6.10 report a priori bounds for Runge–Kutta schemes.

6.1. Linear multistep schemes

Here, we perform error analysis for implicit linear multistep schemes. We will use subscripts ?, G and
P to denote the solution to full-order model O∆E (2.3), Galerkin ROM O∆E (3.7), and the LSPG ROM
O∆E (4.3), respectively. We also acknowledge that linear multistep schemes with k > 1 usually employ
different coefficients βj and αj for different time steps; this is necessary because at time step n, a maximum
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of n + 1 states is available from past history (starting with the initial condition at n = 0). Therefore, we
allow for coefficients that depend on the time step n, i.e., αnj and βnj . In addition, we define Ψn := Ψn(x̂nP )
whose entries are defined by Eq. (4.4). We can then write the discrete equations arising at each time step n
for linear multistep schemes as

αn0x
n
? = βn0 ∆tf (x0 + xn? , t

n) + r?

[
xn−k? , . . . ,xn−1

?

]
, x0

? = 0 (6.1)

αn0 x̂
n
G = βn0 ∆tΦTf

(
x0 + Φx̂nG, t

n
)

+ r̂G

[
x̂n−kG , . . . , x̂n−1

G

]
, x̂0

G = 0 (6.2)

αn0 x̂
n
P = βn0 ∆t

(
(Ψn)TΦ

)−1

(Ψn)Tf
(
x0 + Φx̂nP , t

n
)

+ r̂nP

[
x̂n−kP , . . . , x̂n−1

P

]
, x̂0

P = 0, (6.3)

where

r?

[
xn−k, . . . ,xn−1

]
:=

k∑
`=1

(
βn` ∆tf

(
x0 + xn−`, tn−`

)
− αn` xn−`

)
,

r̂G

[
x̂n−k, . . . , x̂n−1

]
, :=

k∑
`=1

(
βn` ∆tΦTf

(
x0 + Φx̂n−`, tn−`

)
− αn` x̂n−`

)
,

r̂nP

[
x̂n−k, . . . , x̂n−1

]
:=

k∑
`=1

(
βn` ∆t

(
(Ψn)TΦ

)−1

(Ψn)Tf
(
x0 + Φx̂n−`, tn−`

)
− αn` x̂n−`

)
,

(6.4)

and xk? := xk? − x0. We define the Galerkin and LSPG operators as

V := ΦΦT , and Pn := Φ
(

(Ψn)TΦ
)−1

(Ψn)T ,

respectively, and Galerkin and LSPG state-space errors at time instance n as

δxnG := xn? −Φx̂nG, and δxnP := xn? −Φx̂nP ,

respectively. As the second argument in f does not play any role for linear multistep schemes (the time
index always matches that of the first argument), will drop it for notational convenience in this section and
in Section 6.2. Moreover, we assume Lipschitz continuity of f in the first argument:

(A1) There exist a constant κ > 0 such that for x,y ∈ RN∥∥f(x)− f(y)
∥∥

2
≤ κ‖x− y‖2 .

Theorem 6.1 (a posteriori error bounds: linear multistep schemes). If (A1) holds and ∆t <
∣∣∣αj0∣∣∣ /(∣∣∣βj0∣∣∣κ),

∀j ∈ N(n) then

‖δxnG‖2 ≤
n−1∑
j=0

min(k,j)∑
`=0

1{0}(j − `) +
∑

(ηi)∈A(j−`)

|(ηi)|∏
i=1

γ
n−∑i−1

m=1 ηm
ηi

 εn−j+``

∥∥∥∥(I − V)f
(
x0 + Φx̂n−jG

)∥∥∥∥
2

(6.5)

‖δxnP ‖2 ≤
n−1∑
j=0

min(k,j)∑
`=0

1{0}(j − `) +
∑

(ηi)∈A(j−`)

|(ηi)|∏
i=1

γ
n−∑i−1

m=1 ηm
ηi

 εn−j+``

∥∥∥∥(I − Pn−j+`
)
f
(
x0 + Φx̂n−jP

)∥∥∥∥
2

,

(6.6)

where we have defined εk` :=
∣∣βk` ∣∣∆t/hk, γk` := (

∣∣βk` ∣∣κ∆t+
∣∣αn` ∣∣)/hk, and hk :=

∣∣αk0∣∣−∣∣βk0 ∣∣κ∆t. Here, 1A(x)
denotes the indicator function, A(p) := {(ηi) | ηi ∈ N(k),

∑
i ηi = p}, and |(ηi)| denotes the length of the

tuple (ηi).
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Proof. It is enough to show bound (6.6), as the arguments for (6.5) are similar. Let n be fixed but arbitrary,
then subtracting Eq. (6.3) from Eq. (6.1) yields

|αn0 |‖δxnP ‖2 ≤|βn0 |∆t
∥∥∥f (x0 + xn? )− Pnf

(
x0 + Φx̂nP

)∥∥∥
2

+
∥∥∥δrn−1

P

∥∥∥
2
, (6.7)

where δrn−1
P := r?

[
xn−k? , . . . ,xn−1

?

]
−Φr̂nP

[
x̂n−kP , . . . , x̂n−1

P

]
. Adding and subtracting f

(
x0 + Φx̂nP

)
and

applying the triangle inequality leads to

|αn0 |‖δxnP ‖2 ≤|βn0 |∆t
(∥∥∥(I − Pn)f

(
x0 + Φx̂nP

)∥∥∥
2

+
∥∥∥f (x0 + xn? )− f

(
x0 + Φx̂nP

)∥∥∥
2

)
+
∥∥∥δrn−1

P

∥∥∥
2
. (6.8)

Invoking (A1), and using ∆t < |αn0 | /|βn0 |κ, we deduce

‖δxnP ‖2 ≤
|βn0 |∆t
hn

∥∥∥(I − Pn)f
(
x0 + Φx̂nP

)∥∥∥
2

+
1

hn

∥∥∥δrn−1
P

∥∥∥
2
. (6.9)

Next, we will estimate
∥∥∥δrn−1

P

∥∥∥
2
. Using the definition of r?, r̂

n
P from (6.4) we derive

∥∥∥δrn−1
P

∥∥∥
2
≤

k∑
`=1

(
|βn` |∆t

∥∥∥∥f (x0 + xn−`?

)
− Pnf

(
x0 + Φx̂n−`P

)∥∥∥∥
2

+|αn` |
∥∥∥δxn−`P

∥∥∥
2

)
. (6.10)

Adding and subtracting f
(
x0 + Φx̂n−`P

)
, applying the triangle inequality in conjunction with (A1) yields

∥∥∥δrn−1
P

∥∥∥
2
≤

k∑
`=1

|βn` |∆t
∥∥∥∥(I − Pn)f

(
x0 + Φx̂n−`P

)∥∥∥∥
2

+

k∑
`=1

(
|βn` |κ∆t+|αn` |

)∥∥∥δxn−`P

∥∥∥
2
. (6.11)

Then (6.9) and (6.11) imply

‖δxnP ‖2 ≤
k∑
`=0

εn`

∥∥∥∥(I − Pn)f
(
x0 + Φx̂n−`P

)∥∥∥∥
2

+

k∑
`=1

γn`

∥∥∥δxn−`P

∥∥∥
2
, (6.12)

where we have used the definitions for εn` and γn` . We note that the corresponding (time-local) error bound
for the Galerkin ROM is simply

‖δxnG‖2 ≤
k∑
`=0

εn`

∥∥∥∥(I − V)f
(
x0 + Φx̂n−`G

)∥∥∥∥
2

+

k∑
`=1

γn`

∥∥∥δxn−`G

∥∥∥
2
, (6.13)

Notice that the term

∥∥∥∥(I − Pi
)
f
(
x0 + Φx̂i−jP

)∥∥∥∥
2

in inequality (6.12) corresponds to the error introduced

at time step i ∈ N(n) from the state at time step i − j with j ∈ N(k); this term always appears in the
time-local error bound with coefficient εij . Further, it contributes to the error at a given time step n > i

through appropriate products of γm` . For example, the product γn1 γ
n−1
2 γn−3

1 provides one possible path for
‘traversing’ the time-local error bounds from time step n to an earlier error contribution at time step n− 4.
Applying this notion more generally and using δx0

P = 0, the error can be bounded by induction according
to inequality (6.6). �

The bounds in Theorem 6.1 can be considered a posteriori error bounds, as they depend on the ROM
solutions x̂G and x̂P and can thus be computed a posteriori if κ can be estimated. Note that the rightmost
term in the Galerkin bound corresponds to the orthogonal projection error of f onto range (Φ), while the
LSPG bound entails an oblique projector that depends on the ROM solution. Because this oblique projection
associates with a discrete residual-minimization property, the LSPG ROM can yield smaller error bounds as
will be shown in Corollary 6.4 of Section 6.2. Also, the first term within square brackets corresponds to errors
incurred at the current time step n (i.e., via the leftmost term on the right-hand side of inequality (6.12)),
while the second term corresponds to all possible ‘paths’ from current time step n to the error contribution
at previous time steps (i.e., the rightmost term on the right-hand side of inequality (6.12)). We now derive
a priori error bounds by slightly modifying the steps in the above proof.
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Theorem 6.2 (a priori error bounds: linear multistep schemes). If (A1) holds, ∆t <
∣∣∣αj0∣∣∣ /(∣∣∣βj0∣∣∣κ),

∀j ∈ N(n) for the Galerkin ROM, and ∆t <
∣∣∣αj0∣∣∣ /(∣∣∣βj0∣∣∣κ‖Pn‖), ∀j ∈ N(n) for the LSPG ROM, then

‖δxnG‖2 ≤
n−1∑
j=0

min(k,j)∑
`=0

1{0}(j − `) +
∑

(ηi)∈A(j−`)

|(ηi)|∏
i=1

γ
n−∑i−1

m=1 ηm
ηi

 εn−j+``

∥∥∥∥(I − V)f
(
x0 + xn−j?

)∥∥∥∥
2

(6.14)

‖δxnP ‖2 ≤
n−1∑
j=0

min(k,j)∑
`=0

1{0}(j − `) +
∑

(ηi)∈A(j−`)

|(ηi)|∏
i=1

γ̄
n−∑i−1

m=1 ηm
ηi

 ε̄n−j+``

∥∥∥∥(I − Pn−j+`
)
f
(
x0 + xn−j?

)∥∥∥∥
2

,

(6.15)

where we have defined ε̄k` :=
∣∣βk` ∣∣∆t/h̄k γ̄k` := (

∣∣βk` ∣∣κ∆t‖Pk‖2 +
∣∣αn` ∣∣)/h̄k, h̄k :=

∣∣αk0∣∣−∣∣βk0 ∣∣κ∆t‖Pk‖2. Other
quantities are defined in Theorem 6.1.

Proof. Instead of adding and subtracting f
(
x0 + Φx̂nP

)
between Eqs. (6.7) and (6.8) and between Eqs. (6.10)

and (6.11) in the proof of Theorem 6.1, adding and subtracting Pnf (x0 + xn? ) and using ‖V‖2 = 1 yields
the stated result. �

We now make two observations about Theorems 6.1 and 6.2. First, note that bound (6.15) is not quite
an a priori bound, as the operator Pk depends on the LSPG ROM solution x̂kP ; while this dependence
could be removed, the bound in its current form facilitates comparison with the Galerkin bound. Second,
note that the rightmost term in the Galerkin a priori error bound (6.14) will always be smaller than the
rightmost term in the LSPG a priori error bound (6.15), as

∥∥(I − V)f
∥∥

2
is orthogonal projection error of

a (fixed) vector f onto range (Φ). As previously discussed, this is in contrast to the a posteriori bounds,
where the discrete residual-minimization property of the LSPG ROM can yield lower error bounds; this will
be illustrated in Corollary 6.4 of Section 6.2 below.

6.2. Backward Euler

We now specialize the result in Theorem 6.1 to the case of the Backward Euler scheme.

Corollary 6.3 (a posteriori error bounds: Backward Euler). Under the assumptions of Theorem 6.1,
for Backward Euler we obtain

‖δxnG‖2 ≤ ∆t

n−1∑
j=0

1

(h)j+1

∥∥∥∥(I − V)f
(
x0 + Φx̂n−jG

)∥∥∥∥
2

(6.16)

‖δxnP ‖2 ≤ ∆t

n−1∑
j=0

1

(h)j+1

∥∥∥∥(I − Pn−j
)
f
(
x0 + Φx̂n−jP

)∥∥∥∥
2

, (6.17)

where h := 1− κ∆t.

Proof. Backward Euler is a single-step method that can be characterized by Eq. (2.2) with k = 1, α0 = 1,
α1 = −1, β0 = 1, and β1 = 0. Because it is a single-step method, these coefficients do not vary between
time steps; as a result, the constants appearing in Theorem 6.1 are also time-step independent and are
h = 1 − κ∆t, ε0 = ∆t/h, ε1 = 0, γ0 = (κ∆t + 1)/h, and γ1 = 1/h. Substituting these values into error
bound (6.6) and noting that

A(j) =

{
{(1, . . . , 1) ∈ Rj} j > 0

∅ otherwise,

yields

‖δxnP ‖2 ≤
∆t

h

n−1∑
j=0

[
1{0}(j) + (1/h)j1N(n−1)(j)

]
︸ ︷︷ ︸

(1/h)j

∥∥∥∥(I − Pn−j
)
f
(
x0 + Φx̂n−jP

)∥∥∥∥
2

, (6.18)
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which simplifies to bound (6.17). Derivation of bound (6.16) is identical and is thus omitted. �
It is not clear how to directly compare the Galerkin and the LSPG a posteriori error bounds (6.5) and

(6.6), although it should be noted that both bounds grow exponentially in time due to the amplification
factor. However, for the numerical experiments in Section 7, which use the three-point backward-difference
scheme, the LSPG uniformly outperforms the Galerkin ROM. We now provide further theoretical justification
for these numerical observations for the backward Euler scheme by comparing a posteriori bounds (6.16)
and (6.17). Similar arguments can be applied to the more general schemes.

To this end, for j = 0, . . . , n− 1, it is sufficient to compare

∆t

∥∥∥∥(I − V)f
(
x0 + Φx̂n−jG

)∥∥∥∥
2

and ∆t

∥∥∥∥(I − Pn)f
(
x0 + Φx̂n−jP

)∥∥∥∥
2

.

Invoking Eq. (6.2), we can rewrite the first term as

∆t

∥∥∥∥(I − V)f
(
x0 + Φx̂n−jG

)∥∥∥∥
2

=

∥∥∥∥Φx̂n−jG −∆tf
(
x0 + Φx̂n−j−1

G

)
−Φx̂n−j−1

G

∥∥∥∥
2

. (6.19)

Similarly, using Eq. (6.3) and the (discrete residual-minimizing) optimality property of x̂n−jP , we deduce

∆t

∥∥∥∥(I − Pn−j
)
f
(
x0 + Φx̂n−jP

)∥∥∥∥
2

=

∥∥∥∥Φx̂n−jP −∆tf
(
x0 + Φx̂n−jP

)
−Φx̂n−j−1

P

∥∥∥∥
2

(6.20)

= min
y

∥∥∥Φy −∆tf (x0 + Φy)−Φx̂n−j−1
P

∥∥∥
2
.

This produces an interesting result: for the same previous state x̂n−j−1
P = x̂n−j−1

G , a direct comparison of
Eqs. (6.19) and (6.20) yields that the quantity on the right-hand side of (6.20) will always be less than that
of (6.19). We state this result below.

Corollary 6.4. If x̂jP = x̂jG, j ∈ N(n − 1), then under the assumptions of Theorem 6.1, the a posteriori

upper bound for ‖δx̂kP ‖2 in Eq. (6.17) will be less than the upper bound for ‖δx̂kG‖2 in Eq. (6.16) for k ∈ N(n).

Corollary 6.5. If x̄ solves an auxiliary problem that computes the full-space solution increment centered on
the LSPG ROM trajectory

x̄j = ∆tf
(
x0 + x̄j

)
+ Φx̂j−1

P , j ∈ N(n), (6.21)

then the following holds:

‖δxnP ‖2 ≤ (1 + κ∆t)

n−1∑
j=0

µn−j

(h)j+1
(6.22)

= ∆t(1 + κ∆t)

n−1∑
j=0

µ̄n−j

(h)j+1
‖f(x̄n−j)‖2. (6.23)

Here, µj :=
∥∥∥Φ∆x̂jP −∆x̄j

∥∥∥
2

denotes the difference in solution increments at time instance j, where ∆x̂jP :=

x̂jP − x̂j−1
P and ∆x̄j := x̄j − Φx̂j−1

P . We denote the relative solution increment at time instance j by
µ̄j := µj/‖∆x̄j‖2.

Proof. Eq. (6.17) in conjunction with (6.20) implies

‖δxnP ‖2 ≤
n−1∑
j=0

1

(h)j+1

∥∥∥∥Φ∆x̂n−jP −∆tf
(
x0 + Φx̂n−jP

)∥∥∥∥
2

. (6.24)
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We can also write the auxiliary equation (6.21) as ∆x̄j = ∆tf
(
x̄j
)
, j ∈ N(n), which allows us to rewrite

bound (6.24) as

‖δxnP ‖2 ≤
n−1∑
j=0

1

(h)j+1
·
∥∥∥(Φ∆x̂n−jP −∆x̄n−j

)
−

∆t

(
f
(
x0 + Φ∆x̂n−jP + Φx̂n−j−1

P

)
− f

(
x0 + ∆x̄n−j + Φx̂n−j−1

P

))∥∥∥
2
.

Lipschitz continuity of f leads to the bound (6.22). To obtain Eq. (6.23), we multiply and divide by
‖∆x̄n−j‖2 for each term in the summation and use ∆x̄n−j = ∆tf

(
x̄n−j

)
. �

Corollary 6.5 is useful in that it expresses the LSPG ROM error in terms of the (time-local) single-step
errors incurred by projection along the LSPG ROM trajectory. In addition, this result highlights the critical
role of the time step ∆t in the performance of the LSPG ROM; the following remark provides this discussion.

Remark 6.6. The time step ∆t in the error bound (6.23) for the LSPG ROM solution plays an important
role. In particular, decreasing the time step produces both beneficial effects (bound decrease) and deleterious
effects (bound increase), which we denote by ‘+’ and ‘-’, respectively as follows:

+ The time-discretization error decreases (this does not appear in the time-discrete error analysis above).

- The number of overall time steps n increases, so there are more terms in the summation.

+ The terms ∆t(1 + κ∆t) and 1/(h)j+1 decrease.

? The term µ̄n−j may increase or decrease, depending on the spectral content of the basis Φ.

We now discuss this final ambiguous effect. The term µ̄n can be interpreted as the relative error in solution
increment over

[
(n− 1)∆t, n∆t

]
. Clearly, the ability of the LSPG ROM to make µ̄n small depends on the

spectral content of the basis Φ: if the basis only captures modes that evolve over long time scales, then µ̄n

will be large (i.e., close to one), as the basis does not contain the ‘fast evolving’ solution components that
change over a single time step. This suggests that the time step should be ‘matched’ to the spectral content
of the reduced basis Φ. In Section 7.5 of the experiments, we explore this issue numerically, and demonstrate
that the error bound is minimized for an intermediate value of the time step ∆t.

We note that the above arguments do not hold for the Galerkin ROM, which is simply an ODE that does
not depend on the time step. Instead, decreasing the time step should increase accuracy, as it has the effect
of reducing the time-discretization error.

6.3. Runge–Kutta schemes

We now derive Runge–Kutta error bounds for the Galerkin ROM (3.10) and the LSPG ROM (4.7). For
notational simplicity, we define fni (·) := f(·, tn−1 + ci∆t), i ∈ N(s), n ∈ N(T/∆t).

We rewrite Eqs. (2.5), (3.9), and (4.7) as

wn
?,i = fni

(
x0 + xn−1

? + ∆t

s∑
j=1

aijw
n
?,j

)
, i ∈ N(s) x0

? = 0

(6.25)

ŵn
G,i = ΦTfni

(
x0 + Φx̂n−1

G + ∆t

s∑
j=1

aijΦŵ
n
G,j

)
, i ∈ N(s) x0

G = 0

(6.26)

ŵn
P,i =

(
(Ψn

ii)
TΦ
)−1

(Ψn
ii)
Tfni

(
x0 + Φx̂n−1

P + ∆t

s∑
j=1

aijΦŵ
n
P,j

)
−
(

(Ψn
ii)
TΦ
)−1 s∑

e=1,e6=i
(Ψn

ie)
T

(
Φŵn

P,e − fne
(
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Theorem 6.7 (a posteriori error bounds: Runge–Kutta schemes). If (A1) holds and ∆t is such
that

(a) the matrix D ∈ Rs×s with entries dij := δij − κ∆t|aij | is invertible, and

(b) for every x,y ≥ 0, if Dx ≤ y then x ≤D−1y,

then
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and
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(6.29)

where Pni := Φ
(
(Ψn

ii)
TΦ
)−1

(Ψn
ii)
T . Here, inequalities applied to vectors hold entrywise.

Proof. Galerkin ROM. First we will show bound (6.28). Subtracting Eq. (6.26) from Eq. (6.25) and applying
the triangle inequality yields
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n
G,j

)
and invoking

assumption (A1), we deduce

‖δwn
G,i‖2−κ∆t

s∑
j=1

|aij |‖δwn
G,j‖2 ≤

∥∥∥(I−V)fni

(
x0+Φx̂n−1

G +∆t

s∑
j=1

aijΦŵ
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Selecting ∆t small enough such that (a) and (b) hold yields
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where [·]ij denotes entry (i, j) of the argument. From explicit state updates (2.7) and (3.11), we obtain
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Finally, an induction argument produces the desired result (6.28).
LSPG ROM. We now prove bound (6.29). Subtracting (6.27) from (6.25) and applying the triangle inequality
yields
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Again selecting ∆t small enough such that (a) and (b) hold yields
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The explicit state updates from (2.7) and (3.11) and the bound for ζ yields

‖δxnP ‖2 ≤
(

1 + κ∆t

s∑
k=1

|bk|
s∑
i=1

[D−1]ki

)
‖δxn−1

P ‖2

+ ∆t

s∑
k=1

|bk|
s∑
i=1

[D−1]ki

∥∥∥(I − Pni )fni

(
x0 + Φx̂n−1

P + ∆t

s∑
j=1

aijΦŵ
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An induction argument yields the bound (6.29). �
As with linear multistep schemes, the error bound for the Galerkin ROM in (6.28) depends on the

orthogonal projection error of fni onto range (Φ), while the LSPG ROM error bound depends on an oblique
projection; however, because the oblique projector depends on the LSPG ROM solution, this bound can
be smaller than the Galerkin bound (as was demonstrated in Corollary 6.4—note that Backward Euler is
also a Runge–Kutta scheme). Further, notice that the complex ‘path traversing’ that appears in the linear
multistep error bounds is not present for Runge–Kutta schemes; this is a consequence of the fact that previous
time steps only influence the error at the current time step through induction for Runge–Kutta schemes. In
addition, note that the LSPG ROM error bound is more complex than the Galerkin bound; the final line
in bound (6.29) is a consequence of the test-basis coupling (4.8) for general implicit Runge–Kutta schemes.
Finally, we point out that both bounds grow exponentially in time due to the amplification factor. We now
present a simpler version of this error bound for explicit Runge–Kutta and DIRK schemes.
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Corollary 6.8 (a posteriori error bounds: explicit Runge–Kutta and DIRK). Under the assump-
tions of Theorem 6.7 for explicit RK (θ = 1) and DIRK (θ = 0) schemes, we have
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Proof. For explicit and diagonally implicit Runge–Kutta schemes (4.12), we have Ψn
ij = 0 when i 6= j. The

proof is then an immediate consequence of (6.29). �
Note that the LSPG error bound (6.30) resembles the Galerkin error bound (6.28) much more closely

than the previous LSPG bound (6.29), as explicit Runge–Kutta and DIRK schemes remove the coupling of
the test basis across stages. We are now ready to state the a priori versions of the Galerkin Runge–Kutta
schemes (6.28) and the LSPG Runge–Kutta schemes (6.29).

Theorem 6.9 (a priori error bounds: Runge–Kutta schemes). If (A1) holds and ∆t is such that
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and
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where we have used the convention that the empty product is equal to one.

Proof. The proof of (6.31) follows the Galerkin-ROM derivation in Theorem 6.7, wherein the quantity
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As with linear multistep schemes, the rightmost term in the Galerkin a priori bound will always be
smaller than that for the LSPG bound, as the former associates with an orthogonal projection error of a
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fixed vector. In addition, the LSPG bound depends on the LSPG ROM solution; while this dependence could
be removed, the bound in its current form facilitates comparison with the Galerkin bound. We again notice
the complex structure of the estimator in (6.32) compared to (6.31). To better understand the behavior the
LSPG estimator in (6.32) we consider two subcases: explicit Runge–Kutta and DIRK schemes.

Corollary 6.10 (a priori error bounds: explicit Runge–Kutta and DIRK). Under the assumptions
of Theorem 6.9 for explicit RK (θ = 1) and DIRK (θ = 0) schemes, we have
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(6.33)

Proof. For explicit and diagonally implicit Runge–Kutta schemes (4.12), we have Ψn
ij = 0 when i 6= j. The

proof is then an immediate consequence of (6.32). �
Owing to the fact that the explicit Runge–Kutta and DIRK schemes removes the coupling of the basis,

we again notice that the LSPG error bound (6.33) resembles the Galerkin ROM error bound (6.31).

7. Numerical experiments

This section compares the performance of Galerkin and LSPG ROMs on a computational-fluid-dynamics
(CFD) application using a basis constructed by proper orthogonal decomposition. These experiments high-
light the importance of the previous analyses, in particular the limiting equivalence of Galerkin and LSPG
ROMs (Theorem 5.3), superior accuracy of the LSPG ROM compared with the Galerkin ROM (Corol-
lary 6.4), and performance improvement of the LSPG ROM when an intermediate time step is selected
(Corollary 6.5 and Remark 6.6).

Note that these experiments could be carried out on any dynamical system yielding a system of nonlinear
ODEs (2.1); we have selected compressible turbulent fluid dynamics due to both its wide interest and
challenging nature: limited progress has been made to date on developing robust, accurate ROMs for such
problems. The numerical experiments highlight this fact, as standard Galerkin ROMs generate unstable
responses in all cases.

7.1. Problem description

The Galerkin and LSPG ROMs are implemented in AERO-F [34, 30], a massively parallel compressible-
flow solver. AERO-F solves the steady or unsteady compressible Navier–Stokes equations with various
closure models available for turbulent flow, and employs a second-order node-centered finite-volume scheme.
For model-reduction algorithms, all linear least-squares problems and singular value decompositions are
computed in parallel using the ScaLAPACK library [15].

The full-order model corresponds to an unsteady Navier–Stokes simulation of a two-dimensional open
cavity using AERO-F’s DES turbulence model (based on the Spalart–Allmaras one-equation model [54]) and
a wall-function boundary condition applied on solid surface boundaries. The fluid domain is discretized by
a mesh with 192,816 nodes and 573,840 tetrahedra (Figure 2). The two-dimensional geometry is discretized
in three dimensions by considering a slab of thin, but finite thickness, in the z-direction; the resulting grid
is one element wide and is created by extruding a distance that is 1% of the cavity length. The viscosity is
assumed to be constant, and the Reynolds number based on cavity length is 6.30×106, while the free-stream
Mach number is 0.6. Due to the turbulence model and three-dimensional domain, the number of conservation
equations per node is 6, and therefore the dimension of the CFD model is N = 1, 156, 896. Roe’s scheme is
employed to discretize the convective fluxes, and a linear variation of the solution is assumed within each
control volume, which leads to a second-order space-accurate scheme. The viscous flux is discretized using a
centered Galerkin scheme. We employ a low-numerical-dissipation scheme that gives fifth-order formal order
of accuracy (with uniform mesh spacing) on inviscid, one-dimensional problems.

Flow simulations are performed within a time interval t ∈ [0, T ] with T = 12.5 seconds. We employ the
second-order accurate implicit three-point backward difference scheme, which is a linear multistep scheme
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(a) Full domain

(b) Detail around cavity

Figure 2: Computational mesh: x− y plane cut.

characterized by k = 2, α0 = 1, α1 = −4/3, α2 = 1/3, β0 = 2/3, β1 = β2 = 0, for time integration; future
work will perform numerical experiments with Runge–Kutta schemes. The O∆E (2.3) arising at each time
step is solved by a Newton–Krylov method, where GMRES is employed as the iterative linear solver with a
restrictive additive Schwarz preconditioner (with no fill in) and the previous 50 Krylov vectors are employed
for orthogonalization. Convergence is declared when the residual norm is reduced to a factor of 10−3 of its
starting value. All flow computations are performed in a non-dimensional setting.

The initial condition x0 is provided by first computing a steady-state solution, and using that solution
as an initial guess for an unsteady ‘transient’ simulation (which captures the initial transient before the flow
reaches a quasi-periodic state) of 7.5 seconds. The state at the end of the unsteady transient simulation is
then used as the initial condition for the subsequent simulations. The steady-state calculation is characterized
by the same parameters as above, except that it employs local time stepping with a maximum CFL number
of 100, it uses the first-order implicit backward Euler time integration scheme, it assumes a linear variation
of the solution within each control volume, it employs a Spalart–Allmaras turbulence model, and it employs
only one Newton iteration per (pseudo) time step.

The output of interest is the pressure at location (0.0001,-0.0508,0.0025), which is shown in the bottom
row of Figure 4. All errors are reported as the `2 relative error in this quantity, i.e.,

ε(p, p?) =

√∑T/∆t?
n=1

(
P?(p)(n∆t?)− p?(n∆t?)

)2√∑T/∆t
n=1 p?(n∆t?)2

,

where p : N(T/∆t) → R is the pressure for the model of interest, p? : N(T/∆t?) → R is this pressure
response of the designated ‘truth’ model (typically the full-order model), and P? is a linear interpolation of
the pressure response onto the grid based on the truth-model time step ∆t?.

All computations are performed in double-precision arithmetic on a parallel Linux cluster3 using 48 cores
across 6 nodes.

7.2. Time-step verification

Because this paper considers the time step to be an important parameter in model reduction, we first
perform a time-step verification study to ensure we employ an appropriate ‘nominal’ time step. Figure

3The cluster contains 8-core compute nodes that each contain a 2.93 GHz dual socket/quad core Nehalem X5570 processor
with 12 GB of memory. The interconnect is a 3D torus InfiniBand.
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3 reports these results using a time-step refinement factor of two. A time step of ∆t? = 0.0015 seconds
yields observed convergence rates in both the instantaneous drag force on the lower wall and instantaneous
pressure at t = T that are close to the asymptotic rate of convergence (2.0) of three-point BDF2 scheme.
Further, this value also leads to sub-2% errors in both quantities, which we deem to be sufficient for this set
of experiments.
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(a) Drag: ∆t? = 0.0015 yields an approximate rate of convergence of 1.94 and an estimated error in the output quantity
(computed via Richardson extrapolation) of 1.26× 10−2. The red points denote the result for ∆t? = 0.0015. The rightmost plot
shows the time-dependent response for the finest tested time step ∆t = 1.875 × 10−4 (black solid) and the converged time step
∆t? = 0.0015 (red dashed).
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(b) Pressure: ∆t? = 0.0015 yields an approximate rate of convergence of 1.83 and an estimated error in the output quantity
(computed via Richardson extrapolation) of 7.68× 10−4. The red points denote the result for ∆t? = 0.0015. The rightmost plot
shows the time-dependent response for the finest tested time step ∆t = 1.875 × 10−4 (black solid) and the converged time step
∆t? = 0.0015 (red dashed).

Figure 3: Time-step verification study. Note that the approximated convergence rates are close to the asymptotic value of 2.0
for the BDF2 scheme.

Figure 4 shows several instantaneous snapshots of the vorticity field and corresponding pressure field
generated by the high-fidelity CFD model. The flow within the cavity is quasi-periodic; during one cycle,
vorticity is shed from the leading edge of the cavity, convects downstream, and impinges on the aft edge of
the cavity. Upon impingement, an acoustic disturbance is generated which propagates upstream and scatters
on the leading edge of the cavity, generating a new vortical disturbance to initiate the next oscillation cycle.
The pressure fields in the bottom row of Figure 4 reveal regions of low pressure (blue contours) associated
with vortices, as well as acoustic disturbances both within the cavity and radiating outside the cavity. This
complex flow is governed by the interactions of several nonlinear processes, including roll-up of the shear
layer vortices, impingement of the vortices on the aft wall resulting in sound generation, propagation of
nonlinear acoustic waves, and interaction of these waves with the shear layer vorticity.

7.3. Reduced-order models

To construct both the Galerkin and LSPG ROMs, we employ the proper orthogonal decomposition (POD)
technique; we employ a constant weighting matrix A = I for the LSPG ROM. To construct the POD basis,
we set Φ ← Φ (X , ν), where Φ is computed via Algorithm 1 of the appendix with snapshots consisting of
the initial-condition-centered full-order model states X = {x?(k∆t?)− x0}8334

k=1 , where x? denotes the FOM
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(a) time = 2.10 (b) time = 2.61 (c) time = 3.12 (d) time = 3.63

(e) time = 2.10 (f) time = 2.61 (g) time = 3.12 (h) time = 3.63

Figure 4: Instantaneous CFD vorticity field (top) and pressure field (bottom) during one oscillation cycle. The dot on the
forward wall of the cavity indicates the location of the pressure signal output.

response computed for a time step of ∆t? = 0.0015. Three values of the energy criterion ν ∈ [0, 1] are used
during the experiments: ν = 1 − 10−4 (p = 204), ν = 1 − 10−5 (p = 368), and ν = 1 − 10−6 (p = 564).
Figure 5 shows a selection of the energy component of the computed POD modes. Note that as the mode
number increases, the modes capture finer spatial-scale behavior, which we expect to be associated with finer
time-scale behavior; this will be verified in Section 7.5.1.

(a) mode 1 (b) mode 21 (c) mode 101

(d) mode 201 (e) mode 401

Figure 5: Visualization of the energy component of the POD modes.

We first repeat the time-step verification study, but we do so for the reduced-order models (again using
the BDF2 scheme) in the time interval 0 ≤ t ≤ 0.55, as all Galerkin ROMs remain stable in this time interval.
Figure 6 reports these results. First, we note that the Galerkin ROM converges an approximated rate of 2.0,
which is what we expect given that the Galerkin ROM simply associates with a time-step-independent ODE
(3.2). However, the LSPG ROM does not exhibit this behavior; in fact the error convergence is not even
monotonic. This is likely due to the fact that the method does not associate with a time-step-independent
ODE.
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(b) LSPG reduced-order model

Figure 6: Time-step verification study for Galerkin and LSPG reduced-order models for p = 368 and 0 ≤ t ≤ 0.55. While
the approximated convergence rate for the Galerkin reduced-order model is close to the asymptotic value of 2.0 for the BDF2
scheme, this is not observed for the LSPG reduced-order model. Note that the error for each ROM is computed with respect its
response for finest Richardson extrapolation, and a dashed red line indicates the snapshot-collection time step ∆t? = 0.0015.
See Figure 7(c–d) for the associated time-dependent responses.

We next perform simulations for both reduced-order models for all tested basis dimensions and time steps;
Figure 7 reports the time-dependent responses. When a response stops before the end of the time interval,
this indicates that a negative pressure was encountered, which causes AERO-F to exit the simulation. We
interpret this phenomenon as a non-physical instability.

First, note that the Galerkin ROMs become unstable (i.e., generate a negative pressure) for all time steps
and all basis dimensions. This is consistent with previously reported results [20, 21, 19, 18] that indicate
Galerkin projection almost always leads to inaccurate responses for compressible fluid-dynamics problems.
In contrast, the LSPG ROM results in many stable, accurate responses for all basis dimensions. Further,
LSPG responses exhibit a clear dependence on the time step ∆t. Subsequent sections provide a deeper
analysis of this dependence.

7.4. Limiting case: comparison

We next compare the responses of the Galerkin and LSPG ROMs for small time windows (when the
Galerkin responses remain stable) and small time steps. Figure 8 reports ε(pdiscrete opt., pGal?)—which is
the difference between the pressure responses generated by the LSPG ROM with different time steps and
the Galerkin ROM with a fixed time step ∆t = 1.875 × 10−4 (the smallest tested time step)—for a time
window 0 ≤ t ≤ 1.1. These responses support an important conclusion (see Theorem 5.3): the Galerkin and
LSPG ROMs are equal in the limit of ∆t → 0.4 This has significant consequences for the LSPG ROM, as
decreasing the time step leads to the same unstable response as Galerkin; larger time steps are needed to
ensure the LSPG ROM is stable for the entire time interval.

Figure 9 reports ε(pdiscrete opt., pFOM?) and ε(pGal., pFOM?)—which are the differences between the two
ROM-generated pressure responses and the full-order model pressure response for ∆t = 1.875× 10−4—as a
function of the time step for all three basis dimensions and three time intervals. These results highlight a
critical observation: the LSPG ROM is more accurate for an intermediate time step. This not only supports
the result of Corollary 6.5, but provides an interesting insight: taking a larger time step not only leads to
better speedups (i.e., the end of the time interval is reached in fewer time steps), but it also decreases the
error, sometimes significantly. This is further explored in the next section.

7.5. Time-step selection

Recall from Corollary 6.5 and Remark 6.6 that decreasing the time step ∆t has a non-obvious effect on
the error bound for the LSPG ROM. We now assess these effects for the current problem.

4Note that in the p = 564 case, it is not clear if the difference is converging to zero. This is likely due to the fact that
the time steps are not sufficiently small to detect convergence to zero in this case. In fact, as the basis dimension p increases,
the basis captures finer temporal behavior (as will be shown in Figure 10) and so the time scale of the ROM response will be
smaller; in turn, smaller time steps ∆t will be required to detect convergent behavior.
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(f) LSPG, p = 564

Figure 7: Responses generated by Galerkin and LSPG ROMs for different basis sizes p and time steps ∆t
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Figure 8: Difference ε(pdiscrete opt., pGal? ) between the pressure responses generated by the LSPG ROM with different time
steps and the Galerkin ROM with a fixed time step ∆t = 1.875 × 10−4 in 0 ≤ t ≤ 1.1. This demonstrates convergence of the
LSPG ROM to Galerkin as ∆t→ 0.

7.5.1. Spectral content of POD basis

In our interpretation of the error bound (6.23) for the LSPG ROM applied to the backward Euler
scheme, we noted that the time step should be ‘matched’ to the spectral content of the trial basis Φ. This
is of practical importance, as selecting an appropriate time step for the ROM should take into account the
relevant temporal dynamics associated with the basis. For example, a time step may be too small if the
basis has filtered out modes with a time scale matching that of the time step. If we assume that the basis
Φ is computed via POD, then we would expect the vectors to be naturally ordered such that lower mode
numbers are associated with lower temporal frequencies. Then, including additional modes has the effect of
encoding information at higher frequencies. It follows that the time step should be decreased as additional
modes are retained in construction of the ROM.

Here we investigate the validity of this assumption by examining the spectral content of the POD basis
vectors for the current cavity-flow problem. We compute the time histories of the generalized coordinates by
projecting the FOM solution onto the POD basis as x̂?(k∆t?) := ΦT (x?(k∆t?)−x0), k ∈ N(8334). We then
compute power spectral densities of the generalized coordinates x̂?(t). Figure 10(a) shows sample spectra,
normalized by the total energy in each signal,5 for several of the POD modes. The figure shows that energy
shifts to higher frequencies as the POD mode number increases, confirming our assumption for this example.
This is further quantified by calculating a characteristic time-scale τ95 associated with each mode; we define
this time scale as the inverse of the frequency below which 95 percent of the energy is captured for that
mode. Figure 10(b) plots this time scale versus the mode number, showing a clear trend of decreasing time
scale with increasing mode number.

Thus, at least for the present application problem, we expect the optimal time step for the LSPG ROM
to decrease as modes are added to the POD basis (this will be verified by Figure 12). Note that systematic
calibration could be performed to attempt to automate selection of the ROM time step as a function of basis
dimension. While this would be of clear practical interest, we do not pursue it here, as optimal-timestep
computation would be complicated in practice by nonlinear interactions arising from the dynamical system,
as well as effects from the spatial-discretization error and POD truncation error.

7.5.2. Error bound behavior

Having verified that higher POD mode numbers correspond to smaller wavelengths, we now numeri-
cally assess quantities related to the error bound (6.23). First, Figure 11(a) reports the dependence of the
maximum relative projection error maxk µ̄

k
?(Φ,∆t) on the time step ∆t and the basis dimension, where

µ̄k?(Φ,∆t) :=
‖(I −ΦΦT )(x?(k∆t)− x?((k − 1)∆t))‖

‖x?(k∆t)− x?((k − 1)∆t)‖ .

5The energy in a time series within some frequency range is obtained by integrating the power spectral density over that
range.
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(b) 0 ≤ t ≤ 1.1, p = 204
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(c) 0 ≤ t ≤ 1.54, p = 204
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(d) 0 ≤ t ≤ 0.55, p = 368
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Figure 9: Galerkin errors ε(pdiscrete opt., pFOM? ) and Petrov–Galerkin errors ε(pGal., pFOM? ) over different time intervals, time
steps, and basis dimensions. For reference, a dashed red line indicates the snapshot-collection time step ∆t? = 0.0015.
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Figure 10: Spectral content of the POD basis.

Note that µ̄k? is closely related to µ̄k from error bound (6.23), as they are equal if x0 + Φx̂P (t) = x(t) and
the LSPG ROM computes x̂kP such that µ̄k is minimized.

These results confirm that adding basis vectors—which we know has the effect of encoding higher fre-
quency content—significantly reduces the projection error for small time steps ∆t, but has less of an effect on
larger time steps, as retaining the first POD vectors already enables dynamics at that scale to be captured.

Next, Figure 11(b) plots the error bound (6.23) for a value of κ = 1 and with µ̄k = µ̄k?. This highlights
an important result: selecting an intermediate time step ∆t leads to the lowest error bound, regardless of
the basis dimension. Even though this result corresponds to the backward Euler integrator, we expect a
similar trend to hold for the present experiment, which uses the BDF2 scheme. The next section assesses
the performance of the LSPG ROM, including its dependence on the time step.
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Figure 11: Assessment of quantities appearing in error bound (6.23). This analysis suggests that an intermediate time step ∆t
can reduce errors for the LSPG ROM.
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7.6. LSPG ROM performance

We now compare the accuracy and walltime performance of the LSPG ROM as the dimension of the
basis, time step, and time interval change. The most salient result from Figure 12 is that choosing an
intermediate time step leads to both better accuracy and faster simulation times. This shows that our
theoretical analysis of the error bound performed in Section 7.5.2 leads to an actual observed performance
improvement. For example, consider the p = 564 case over the time interval 0 ≤ t ≤ 2.5. In this case,
a time step of ∆t = 1.875 × 10−4 leads to a relative error of 0.0140 and a simulation time of 289 hours;
increasing this value to ∆t = 1.5 × 10−3 reduces the relative error to 9.46 × 10−4 and the simulation time
to 35.8 hours, which constitutes roughly an order of magnitude improvement in both quantities. Again, this
supports the theoretical results of Corollary 6.5 and highlights the critical importance of the time step for
LSPG reduced-order models.

In addition, Figure 12 shows that as the basis dimension increases, the optimal time step decreases; this
was anticipated from the spectral analysis performed in Section 7.5.1. In addition, adding POD basis vectors
does not improve accuracy for large time steps. We interpret this effect as follows: for larger time steps,
the first few POD modes accurately capture ‘coarse’ phenomena on the scale of the time step. Therefore,
accuracy improvement is not achieved by adding modes that encode dynamics that evolve on a time scale
finer than the time step itself.

Further, Figure 12(g) highlights that as the basis dimension increases, the error generally decreases, which
is an artifact of a priori convergence achieved by the LSPG ROM (Remark 4.1). Finally, the figure shows
that as the time interval grows, the optimal time step generally increases.

7.7. GNAT: ROM with complexity reduction

In this section, we perform a similar study, but equip the LSPG ROM with complexity reduction in order
to achieve computational savings. In particular, we employ the GNAT method [19, 20, 21], which solves
Eq. (4.1) with A = (PΦr)

+
P , where Φr is a basis for the residual and P consisting of selected rows of the

identity matrix.
The problem is identical to that described in Section 7.1 except that we take T = 5.5 seconds and employ

a second-order space-accurate dissipation scheme wherein a linear variation of the solution is assumed within
each control volume.6 For this simulation, the full-order model consumes 5.0 hours on 48 cores across six
compute nodes.

To construct the trial basis Φ and basis for the residual Φr for the GNAT models, we again employ POD.
In particular, we set Φ← Φ (X , ν), where Φ is computed via Algorithm 1 with snapshots consisting of the
centered full-order model states X = {x?(k∆t?)−x0}3668

k=1 . An energy criterion of ν = 1− 10−5 (p = 179) is
used during the experiments. For the residual, we employ Φr ← Φ (Xr, νr) via Algorithm 1 with snapshots

Xr = {rn(x0 + Φŵn(k)), k ∈ N(K(n)), n ∈ N(2228)} and ŵn(k) corresponding to the LSPG ROM solution
at Gauss–Newton iteration k within time step n using a time step of ∆t = 6×10−3. Here, K(n) denotes the
number of Newton iterations required for convergence of at time instance n. An energy criterion of νr = 1.0
is employed. In addition, the GNAT model sets the Jacobian basis equal to residual basis ΦJ = Φr and
employs ns = 743 sample nodes that define P , which leads to 4458 rows in P as there are six conservation
equations per node due to the turbulence model (see Ref. [21] for definitions).

The GNAT implementation in AERO-F is characterized by the sample-mesh concept [21]. Figure 13
depicts the sample mesh for this problem, which was constructed using nc = 2228 working columns [21,
Algorithm 3], and includes two layers of nodes around the sample nodes (to enable the residual to be
computed at the sample nodes). It is characterized by 7,974 total nodes (4.1% of the original mesh) and
17,070 total volumes (3.0% of the original mesh). Due to the small footprint of the sample mesh, the GNAT
simulations are run using only 2 cores on a single compute node.

Figure 14 reports the results obtained with the GNAT ROM using different time steps. Critically, note
that the GNAT ROM also exhibits a ‘dip’ in the optimal time step, with a time step of 6.0× 10−3 yielding
the lowest error. In fact, increasing the time step from 1.5 × 10−3 to 6.0 × 10−3 decreases the error from
3.32% to 2.25% and also significantly increases the computational savings relative to the full-order model

6This is done to ensure the sample mesh requires two layers of neighboring nodes for each sample node.
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Figure 12: Dependence of error and simulation time for the LSPG reduced-order model on the time step ∆t, basis dimension,
and time interval

35



(a) Full domain

(b) Zoom on cavity

Figure 13: Sample mesh (red) embedded within original mesh. The sample mesh is used to to enable low-computational-footprint
simulations with the GNAT reduced-order model.
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(as measured in core–hours) from 14.9 to 55.7. This highlights that the analysis is also relevant to ROMs
equipped with complexity reduction.
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Figure 14: Responses, errors ε(pGNAT, pFOM? ), and computational savings (as measured in core–hours) produced by the GNAT
reduced-order model for different time steps ∆t.

7.8. Summary of experimental results

We now briefly summarize the main experimental results:

• Galerkin ROMs are unstable for long time intervals (Figure 7).

• LSPG ROMs are only unstable for small time steps (Figure 7).

• Galerkin and LSPG ROMs are equivalent as ∆t→ 0 (Figure 8).

• LSPG ROMs are more accurate than Galerkin ROMs over small time windows where Galerkin is stable
(Figure 9).

• LSPG ROMs are most accurate for an intermediate time step (Figure 9).

• Adding POD modes has the effect of including higher-frequency response components (Figure 10).

• The theoretical error bound for the LSPG ROM exhibits the same time step ‘dip’ as the experimentally
observed error (Figure 11).
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• The optimal time step for the LSPG ROM decreases as modes are added to the POD basis (Figure
12).

• Adding modes to the POD basis has little effect on LSPG ROM accuracy for large time steps (Figure
12).

• The optimal time step for the LSPG ROM tends to increase as the time interval increases (Figure
12(g)).

• The GNAT ROM, which is discrete optimal and is equipped with complexity reduction, also produces
minimal error for an intermediate time step (Figure 14).

8. Conclusions

This work has performed a comparative theoretical and experimental analysis of Galerkin and LSPG
reduced-order models for linear multistep schemes and Runge–Kutta schemes. We have demonstrated a
number of new findings that have important practical implications, including conditions under which the
LSPG ROM has a time-continuous representation, conditions under which the two techniques are equivalent,
and time-discrete error bounds for the two approaches.

Perhaps most surprisingly, we demonstrated that decreasing the time step does not necessarily decrease
the error for the LSPG ROM. This phenomenon arose in both the theoretical analysis and in numerical
experiments. In particular, our results suggest that the time step should be ‘matched’ to the spectral content
of the reduced basis. In the experiments, we showed that increasing the time step to an intermediate value
decreased both the error and the simulation time by an order of magnitude in certain cases. Alternatively,
decreasing the time step cause the LSPG ROM to become unstable for longer time intervals. This highlights
the critical importance of time-step selection for LSPG ROMs.
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Appendix

Algorithm 1 reports the algorithm for computing a POD basis using normalized snapshots.
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